
All I Ever Needed to Know About Programming, I Learned From
Re-writing Classic Arcade Games

Katrin Becker

Graduate Division of Educational Research,
Faculty of Education
University of Calgary
beckerk@ucalgary.ca

J. R. Parker
Digital Media Laboratory

University of Calgary
jparker@ucalgary.ca

Abstract

The quest for interesting, engaging, yet doable
programming assignments is an ongoing one.
Authentic, realistic examples have often been
drawn from business, and games have often been
overlooked as being too narrow in scope. This
paper explains why computer games, especially
classic arcade games are ideal vehicles for
learning to program. Games are important popular
cultural objects that should not be dismissed.
Indeed, classic arcade games embody virtually all
of the components necessary for a thorough
grounding in software design, and can easily be
applied to many advanced topics. Various classic
arcade games are examined to demonstrate where
they connect with computer science pedagogy.

1. Introduction

According to the Computing Research
Association’s report of May 2005, enrollment in
computing science programs has declined an
average of 39% since 2000 [1]. This trend shows
no signs of abating, especially with the current
trend towards outsourcing of high tech jobs,
primarily to the Far East. Although there is an
unarguable drop in demand for high tech
professionals, it is predicted that the drop in
demand will be considerably less than the drop in
enrollments [2]. This trend has many
consequences, among them: How will we fill the
need for programmers of all kinds and games
programmers in particular in the near future? How
can we interest freshman in choosing computer
science? This is still where most of our games
programmers begin. Part of the answer for both of
these questions is to teach programming by having

students write games, and classic arcade games are
especially suited for this role. Others are also
recognizing the value of games in the curriculum:
Microsoft Research chose games curricula as one
of their two major focuses for funding in 2004 [3].

2. Traditional Project Fare

As the twenty-first century begins to unfold,
we continue the frequently intense reflection on
the previous century, and one of the areas under
scrutiny is formal education. The Taylorian model
of education, that is, the scientific management of
learning has, among other things, resulted in
widespread mathematical sequencing of
curriculum into uniform, incremental steps. This
has also resulted in the notion that the ‘proper’
way to teach science is in a step-wise fashion,
beginning with very simple problems and
examples, and progressing slowly to more
complex ones [4], often culminating in “the
capstone course.” Perhaps it is no coincidence that
the term used to describe such a course comes
from masonry – a medium not renowned for its
malleability.

In Computer Science, this serial, graduated
order of instruction resulted in novice ‘projects’
that involved writing programs that did little more
than sort lists of simple data (like names). In more
recent times this has been updated to include
writing programs to manage employee records –
maybe even implementing graphical interfaces for
the user menus. But, guess what? They are still
sorting lists, only now the data is more complex.
The actual problem is much the same.

Little by little, educators are beginning to
question the absoluteness of this serial, graduated
order and considering more dynamic ones. Until
fairly recently, this has been “a hidden but
dominant aspect of contemporary curriculum,

becker-parker Page 1 9/19/2005 3:20 PM

from first grade through college. Only
Kindergarten, and doctoral seminars seem able to
develop more interactive, dynamic, and complex
forms of order.” p. 36 [5] These days, terms like
deep learning, engagement, authentic learning,
and student-centered are in vogue. We’ve begun to
accept that we should come up with interesting,
engaging, and challenging problems for our
students to connect with.

However, we are often at a loss for ideas – we
need problems that meet stated objectives, can be
solved to a reasonable minimum standard, and yet
leave room to challenge the better students. Often
additional functionality added to a typical
assignment simply involves more code without
also requiring greater complexity. This is clearly
not effective. We want the problems to be
interesting for our students while still forcing them
into contact with the necessary content. If building
on a student’s expertise results in a more engaging
problem, we should look seriously at how students
spend their time. Problems drawn from accounting
or management are common, but seriously, how
many students do you know that do accounting as
a hobby or pastime?

3. Games and Students

Casual polls of students enrolled in the
introductory computer science class at the
institution where the authors teach indicate that
two thirds to three quarters of all freshmen in
computer science became interested in computer
science because they play computer and video
games. This includes students who have not
declared a major, and those who have declared
majors in other disciplines. At least half of the
students enrolled in the second introductory course
express a desire to be involved in the games
industry at a level beyond simply being
consumers. By and large, students understand
games far better than they understand employee
records keeping, and ‘widget’ manufacturing, both
of which are sources of favorite entry-level
programming problems. Current wisdom implies
that learning is most effective when we build on
what the learner already knows, and using
situations they are familiar with [6, 7]. If they also
care about these problems, that is even better.
Students care about games. This is not in dispute.

The challenge is to demonstrate that games
embody many, if not all of the fundamental
concepts important to a thorough grounding in
computer science.

4. Games and Pedagogy

Gameplay is directly tied to programming:
more complex gameplay = more complex and
different algorithms to implement. Always. This
does not include simply adding more of
something: the complexity of the program is
roughly the same if you implement 5 lives for
Frogger as it would be if you were to implement
5000. There is, however a difference between one
and many, and an even greater difference between
a frog that can be made to move across the road
and be killed by passing cars, and one that gets
killed by trucks, but thrown to another location by
a car.

Games are highly visual. For one thing, if a
student miscounts the number of objects to be
drawn on the screen, it is immediately obvious.
Students can see their algorithms in action. In
other words, on-screen behaviour of the game
elements as well as the player control can often be
mapped directly onto specific algorithms, and they
can be traced while the algorithm is running. This
kind of immediate feedback is game-like itself,
and tends to encourage experimentation with the
programs and algorithms. This cannot be said, for
example, of doing the monthly payroll run for our
employee program.

The importance of program testing is also easy
to convey within the context of games. Anyone
who has ever played a game, which coincidentally
includes virtually all college students, recognize
the importance of a software product (i.e. their
game) working properly. In fact approaches to
testing can easily be related to what students
already do while they are playing games (“Try it
and see what happens.”). Further, the whole notion
of ‘cheats’ and cheat codes in games stems from
testing elements that have remained in the game
once it ships. This concept is extremely useful
when discussing software testing and debugging.

Two common objections to the use of games,
aside from those objections that stem from a
general disapproval of games as frivolous, are 1)
that the graphics (and audio) are irrelevant

becker-parker Page 2 9/19/2005 3:20 PM

anywhere but in a graphics course, and 2) that the
event-driven nature of most games situate them in
a restricted sub-class of programming problem: i.e.
event-driven programming. The conclusion of
these objections is that games are applicable to
only a select set of courses, and to only a select set
of modules within those courses.

To address the first objection, GUI’s are great
fun, but admittedly complicate an already complex
introduction to programming [8], and in the
opinion of the authors, should not be the focus of
fundamental courses. The ACM curriculum lists
GUI programming as a minor element in the
introductory sequence [9], and thus de-
emphasizing this aspect here will not put students
at a disadvantage. Many games can be
implemented quite effectively without the use of
sophisticated GUIs or graphics and sound, so this
is not an essential element of games for our
purposes. Further, because of the state of hardware
at the time these games were developed, classic
arcade games lend themselves especially well to
this approach.

Secondly, the event-driven programming can
be made optional in virtually all of the games
described in this paper by converting them into
turn-based play. Event-driven programming is
admittedly a difficult concept. Early courses in CS
and programming used to avoid event driven code
entirely, but more and more students are using
Java in first and second year. This language
encourages objects early in the presentation
sequence, and can involve the use of events early
too, as they are connected to SWING and AWT
interfaces. Event-driven programming has become
an element of the introductory sequence, albeit a
small one [9], and games can be created that both
include, or exclude event-driven aspects.

5. What’s So Special About Arcade
Games?

For the purposes of this paper, classic arcade
games are defined to include games that were
traditionally found in the arcades of the late 70’s
and early 80’s (like Asteroids! and Space
Invaders) as well as games found on early home
consoles (like Pong). There are three highly
significant advantages of these classic arcade
games over more modern or custom designed

games for the purposes of teaching programming,
and they are interconnected.

First, classic arcade games are immediately
familiar to most students, and many students
already know how to play them. The value of fully
understanding how a program is supposed to work
is essential to the generation of correct solutions
and should not be underestimated. Minesweeper
for example, while not a classic game, is still a
game that almost all students have tried - it is part
of their PC (and has been for a very long time).
This puts the problem they are to solve in a
context with which they are already familiar [10].
While the implementation of Minesweeper is no
more difficult than the well-known Game of Life
(it is in fact marginally simpler), the difference is
that they knew Minesweeper when they were mere
computer users. Writing it themselves and seeing
their efforts behave just like the real thing forces
them to cross a significant perceptual boundary:
they become the “creators”. They go from
experiencing the “magic” to being the
“magicians”.

Second, these games were designed when
hardware was limited and graphics were, relatively
speaking, crude. This means that the internal
complexity of the program is, relatively speaking,
low. It also means that we can afford to gloss over
some of the graphical aspects of games without
loss of credibility, or student interest. In fact,
many of these games can be designed and built as
ASCII games with nothing more than a
monochrome text display. Past experience with
this approach in a several first year classes
indicates that this approach has little negative
impact on the students’ interest [11].
Implementing a game like Minesweeper, for
example, is a problem of a complexity that easily
compares with any other typical late-term first-
year assignment. Conway’s Game of Life [12] is a
long-time favorite, and although students generally
enjoy implementing this game, they do not get as
excited about it as they do implementing
Minesweeper.

The third advantage of using arcade games as
opposed to using newer commercial games or
inventing our own is that multiple excellent
working examples exist out there for students to
try and play with (for free). This is sometimes
cited as an impediment to the use of these games
as assignments – namely – students can simply get

becker-parker Page 3 9/19/2005 3:20 PM

working solutions and attempt to pass them off as
their own. True. They can. However, this claim is
also true for the majority of programming
problems that are assigned to undergraduates,
regardless of domain. Teaching faculty have been
inventing programming assignments for thirty or
so years. Chances are high that somebody,
somewhere has created a solution to the problem
you have posed, and offered it on the web. One
effective way to address this problem is to allow
students to demonstrate their understanding by
having them talk about their own programs and
explain various aspects of them as part of the
completion requirements. Anyone who didn’t
write his or her own code would be unable to
explain how it works. On the other hand, if they
can explain, then they have demonstrated that they
understand the concepts even if they didn’t write
all the code themselves, and the goals of the
assignment will have been met anyways. We still
win.

To summarize, classic arcade games are
obviously a part of the game world that was
responsible for attracting these students in the first
place, which provides an important real-world
connection to drive their studies. The games
currently have the added bonus of enjoying a
renaissance of popularity as ‘retro’ games. These
games were a part of popular culture when game
technology was far simpler; so they are part of the
culture, yet exist at a level that students can master
as programmers. And finally, also because they
are part of this domain, there exist plenty of
working examples that students can turn to in
order to help themselves fully understand the
problem, as well as to compare against their own
answers.

6. Which Games Teach What Concepts?

The technology embodied in typical digital
games means that almost any concept in computer
science is represented in some form in some game
[13]. Object-oriented programming is the common
paradigm used in introductory courses. Virtually
all of these game programs can be used to
demonstrate object-oriented programming, and
make the concepts of polymorphism and
inheritance clear and straightforward: of course
trees and boulders are kinds of obstacles, while

potions and bananas are treasures. Obstacles share
certain properties and behaviours as a group as
well as having individual differences. Treasures
also share properties and attributes, yet it is pretty
obvious that there is a need for specific
differences. This kind of clarity is much harder to
achieve and appears much more contrived when
using employee records.

Almost all games contain the same basic
concepts like list manipulation, subprograms,
random number use, error detection and
correction, and user interfaces, but some ‘classes’
of game are more valuable than others for
demonstrating specific concepts:
1. Action shooters like Asteroids!, Missile

Command and Defender require collisions
detection algorithms and distance calculations.

2. Pac-man is an excellent maze puzzle requiring
path finding and chasing (tracking) algorithms.

3. Puzzle games like Tetris and Qbert involve 2D
geometry, packing algorithms (even though the
user/player does the packing, the program must
still be able to check the moves) and detection
of reasonably complex win-states. These are
excellent for practice with the development of
efficient condition checking.

4. Blocks, Breakout!, and Pong all require physics
(bouncing). These are perhaps the only group of
games best designed as real-time, event driven
programs. The games themselves are otherwise
fairly uncomplicated and so provide an effective
balance from a programming perspective.

5. The side-scrolling platform action adventures
like Mario Bros., Donkey Kong, Pitfall, and
Joust include everything from rudimentary
physics to potentially complex inventory and
asset management, and various AI techniques.

6. Racing and driving games like Indy 500 and
Street Racer feature algorithms in physics, AI
and collision detection, but of course can also
include all levels (from novice to advanced) of
graphics, user interfaces, audio, and 3D
animation. [14]

7. Finally, Zork, one of the earliest commercially
available text-based adventure games, contains
all of the fundamental elements of modern role-
playing games, but without the multi-million
dollar development budget, timelines, and
development teams. Role-playing games are

becker-parker Page 4 9/19/2005 3:20 PM

especially useful for practice in parsing, and
various AI algorithms.

7. Adding or Removing Complexity

Novice problems are defined in this paper as
those that have limited data types and complexity
and contain a smaller number of distinct
algorithms. They expressly do not require the use
of object-oriented constructs like inheritance and
polymorphism. They are ideal for learners just
beginning to program, they could be implemented
in languages like ‘C’, or even Pascal, and posed in
a first course on programming. More complex
problems can be simplified by altering the
gameplay, or providing ‘plug-ins’ (routines or
utilities that students can use without seeing the
code inside) and so can also be turned into novice
assignments. For example, the flood-fill algorithm
in Minesweeper makes the game too complex for
many novices because it requires an understanding
of recursion, so providing a utility that does it for
them reduces the level of complexity to that
roughly equivalent to the Game of Life. Similarly,
maze games and platform action side-scrollers can
have their ‘worlds’ simplified to allow a novice or
intermediate programmer to deal with the
programming issues at hand without becoming
bogged down in issues that essentially deal with
matters of degree, rather than kind.

Alternately, some of the “simpler” games can
still be appropriate for more advanced classes by
focusing on animation, or graphics, or multi-player
modes. The problem of saving state, even for a
text-based action game can become a problem in
file formats or data architecture.

Virtually all games listed here can be staged.
Problems that can be staged are those that allow
for varying levels of completion within the same
assignment. For example, a game like Frogger
allows for multiple stages of completion with even
the simplest level having the attributes of a
working game. Frogger is a particularly good
example for it is currently playing a dual role as
both classic arcade game, and lightweight console
game. In Frogger, a low-level but still working
solution would have only a single Frog that moves
correctly on the screen, 2 rows of vehicles moving
in opposite directions along the highway and one
home at the top. There is no boulevard or river in

this solution. The midrange solution will have 3
homes, 5 rows of vehicles, and a working Frog
who can move (but not necessarily jump) and
ONE OF: two kinds of river beast, ---OR--- a
boulevard to rest on (with NO time limit for the
Frog’s stay). The Frog should be able to ride on
the critters in the river instead of sliding off. The
best solution will have 5 homes, 5 rows of
vehicles, one Frog, AND 5 rows of river beasts all
working correctly. The boulevard will have a time
limit, and the turtles must sometimes dive. The
"full-function" Frogger is bonus, and can be
offered as a challenge for more advanced students.
It includes the girl Frog; alligators whose mouths
open, and snakes on logs and on the boulevard.
Frogger himself should be permitted multiple
incarnations.

Note that each stage introduces not only a new
level of complexity to the gameplay, but, more
importantly from the perspective of its value as a
programming assignment, introduces additional
complexity to the programming in the form of new
algorithms.

8. Conclusions

Arcade games have a great deal to offer as
subjects for programming assignments. They
encompass all of the elements necessary for a
fundamental grounding in computer science as
well as many aspects of more advanced study,
regardless of the student’s eventual application
area. Classic arcade games are especially suited to
this task. Being part of the popular culture, these
games are readily recognizable cultural objects,
giving them a built-in connection to the real world,
thus creating the authenticity necessary for
effective student engagement.

A key requirement in the solution of any
problem is to fully understand that problem.
Having a working example of a solution with
which students can interact is important. Having
multiple examples is even better, but creating
these for a newly made-up problem is time
consuming. Multiple working examples of classic
arcade games already exist in the public domain.
Modern games are typically very complex and
take full advantage of the latest developments in
hardware resources. Having been created with
twenty-five year old technology, classic games are

becker-parker Page 5 9/19/2005 3:20 PM

perforce less sophisticated then newer games. This
means that recreating these objects is within the
reach of novice programmers, while modern
games are generally not (Halo 2, anyone?).

To close with one final thought, the more
games get used as pedagogical tools, the more
they will gain in general acceptance. This is
almost certain to be a good thing.

9. Appendix: Classic Games and What We Can Learn with Them

Classic Arcade Games

1 = 1st year; 2 = 2nd year; 3+ = Senior level or Grad Course MP = can be designed as multiplayer

A/T = ASCII or Text-based; A/G = Animation and Graphics; T/P = Trajectories and other Physics; IM = Inventory Management

Y = Yes (blank = no) N = Novice, I = Intermediate, A = Advanced

Suitable for: Pedagogy
Game Type of game

1 2 3+ A/T A/G T/P IM MP Other algorithms

Asteroids! Action shooter Y Y Y Y N,I,A Y Y Collision, AI

Attaxx Reversi Y Y Y N Y Y AI

Blocks, Break Out Bouncing object Y Y Y N Y Y ?

Qbert Puzzle Y Y -

Frogger Simple strategy Y Y Y

Indy 500, Street racer Racing Y Y Y IA Y Y Collision, path-
finding, AI

Lunar Lander Gravity, physics Y Y Y NIA Y

Minesweeper, Gold Monkey Grid puzzle Y Y Y Y Y Flood-fill

Missile Command, Defender Action shooter, vector Y Y Y NIA Y Y Y Distance, AI

Pac Man Maze Y Y Y N Y Path-finding,
chasing

Donkey Kong, Joust, Mario
Bros., Pitfall

Platform action adventure,
side-scrolling Y Y Y NIA ? Y Y Chasing, AI

Pong Bouncing object Y Y Y Y N Y Y

Space Invaders, Space war Shooter Vector Y Y Y NI Y Y ?

Tetris Puzzle, gravity, packing Y Y Y Y N,I Packing

Zork Text-based adventure Y Y Y Y Y Parsing, AI

10. References

[1] J. Vegso, "Interest in CS as a Major Drops Among
Incoming Freshmen," in Computing Research
News, vol. 17: Computing Research Association,
2005, URL:
http://www.cra.org/CRN/articles/may05/vegso.

[2] S. Hamm, "Home Is Where The Work Is," in
Business Week Online, July 25, 2005 ed, 2005,
URL:
http://www.businessweek.com/magazine/content/0
5_30/b3944048_mz011.htm.

[3] "Computer Game Production Curriculum 2004
RFP Awards," in External Research and Programs:
Mocrosoft Reserach, 2005, [Electronic Source]
Retrieved from:

http://research.microsoft.com/ur/us/fundingopps/G
aming_curriculumRFP_awards.aspx, accessed:
July 28 2005.

[4] S. Cooper, W. Dann, and R. Pausch, "Teaching
Objects-first In Introductory Computer Science,"
presented at 34th SIGCSE Technical Symposium
on Computer Science Education, Reno, Navada,
USA, 2003, URL:
http://portal.acm.org/citation.cfm?id=611966.

[5] W. E. Doll, A post-modern perspective on
curriculum. New York: Teachers College Press,
1993.

[6] J. Lave and E. Wenger, Situated learning:
legitimate peripheral participation. Cambridge
[England]; New York: Cambridge University
Press, 1991.

becker-parker Page 6 9/19/2005 3:20 PM

http://www.cra.org/CRN/articles/may05/vegso
http://www.businessweek.com/magazine/content/05_30/b3944048_mz011.htm
http://www.businessweek.com/magazine/content/05_30/b3944048_mz011.htm
http://research.microsoft.com/ur/us/fundingopps/Gaming_curriculumRFP_awards.aspx
http://research.microsoft.com/ur/us/fundingopps/Gaming_curriculumRFP_awards.aspx
http://portal.acm.org/citation.cfm?id=611966

[7] J. S. Bruner, Toward a theory of instruction. sl: sn.,
1966.

[8] E. Roberts, "The dream of a common language:
The search for simplicity and stability in computer
science education.," presented at Thirty-Fifth
SIGCSE Technical Symposium on Computer
Science Education, Norfolk, VA, 2004, URL:
http://doi.acm.org/10.1145/971300.971343.

[9] "Computing Curricula 2001: Final Report of the
Joint ACM/IEEE-CS Task Force on Computer
Science Education," IEEE Computer Press, Los
Alamitos, CA December 2001, URL:
http://www.acm.org/sigsce/cc2001.

[10] E. Soloway, "Learning to Program = Learning to
Construct Mechanisms and Explanations,"
Communications of the ACM, Vol. 29 No. 9, pp.
p850-858, 1986.

[11] K. Becker, "Teaching with games: the
Minesweeper and Asteroids experience," Journal of
Computing in Small Colleges, Vol. 17 No. 2, pp.
23-33, 2001, URL:
http://www.cpsc.ucalgary.ca/~becker/Main/Papers/
Asteroids.htm.

[12] E. R. Berlekamp, J. H. Conway, and R. K. Guy,
Winning ways, for your mathematical plays.
London: Academic Press, 1982.

[13] J. R. Parker and K. Becker, "The Use of Games in
the Undergraduate Computer Science Curriculum."

Calgary, 2002, [Electronic Source] Retrieved from:
http://www.ucalgary.ca/~jparker, accessed: July 20
2005.

[14] J. R. Parker, Start Your Engines: Developing
Racing and Driving Games. Scotsdale, AZ:
Paraglyph Press, 2005.

First Year Programming Assignments:
(note: if anyone has difficulty accessing these, please
send email to the author.)
Minesweeper Assignment:
http://pages.cpsc.ucalgary.ca/~becker/235/Asst/Mine
Sweeper/MineSweeper.html
Asteroids Assignment:
http://pages.cpsc.ucalgary.ca/~becker/235/Asst/Aster
oids/Asteroids.html
Space Invaders Assignment:
http://pages.cpsc.ucalgary.ca/~becker/235/Asst/Spac
eInvaders/Invaders.html
Centipede Assignment:
http://pages.cpsc.ucalgary.ca/~becker/235/Asst/Centi
pede/Centipede.html
Tetris Assignment:
http://pages.cpsc.ucalgary.ca/~becker/235/Asst/Tetri
s/tetris.htm
Frogger Assignment:
http://pages.cpsc.ucalgary.ca/~becker/235/Asst/Frog
ger/Frogger.html

becker-parker Page 7 9/19/2005 3:20 PM

http://doi.acm.org/10.1145/971300.971343
http://www.acm.org/sigsce/cc2001
http://www.cpsc.ucalgary.ca/%7Ebecker/Main/Papers/Asteroids.htm
http://www.cpsc.ucalgary.ca/%7Ebecker/Main/Papers/Asteroids.htm
http://www.ucalgary.ca/%7Ejparker
http://pages.cpsc.ucalgary.ca/%7Ebecker/235/Asst/MineSweeper/MineSweeper.html
http://pages.cpsc.ucalgary.ca/%7Ebecker/235/Asst/MineSweeper/MineSweeper.html
http://pages.cpsc.ucalgary.ca/%7Ebecker/235/Asst/Asteroids/Asteroids.html
http://pages.cpsc.ucalgary.ca/%7Ebecker/235/Asst/Asteroids/Asteroids.html
http://pages.cpsc.ucalgary.ca/%7Ebecker/235/Asst/SpaceInvaders/Invaders.html
http://pages.cpsc.ucalgary.ca/%7Ebecker/235/Asst/SpaceInvaders/Invaders.html
http://pages.cpsc.ucalgary.ca/%7Ebecker/235/Asst/Centipede/Centipede.html
http://pages.cpsc.ucalgary.ca/%7Ebecker/235/Asst/Centipede/Centipede.html
http://pages.cpsc.ucalgary.ca/%7Ebecker/235/Asst/Tetris/tetris.htm
http://pages.cpsc.ucalgary.ca/%7Ebecker/235/Asst/Tetris/tetris.htm
http://pages.cpsc.ucalgary.ca/%7Ebecker/235/Asst/Frogger/Frogger.html
http://pages.cpsc.ucalgary.ca/%7Ebecker/235/Asst/Frogger/Frogger.html

	All I Ever Needed to Know About Programming, I Learned From Re-writing Classic Arcade Games
	University of Calgary
	Abstract
	1. Introduction
	2. Traditional Project Fare
	3. Games and Students
	4. Games and Pedagogy
	5. What’s So Special About Arcade Games?
	6. Which Games Teach What Concepts?
	7. Adding or Removing Complexity
	8. Conclusions
	1.
	9. Appendix: Classic Games and What We Can Learn with Them
	1.
	10. References

